Increased rotational mobility and extractability of band 3 from protein 4.2-deficient erythrocyte membranes: evidence of a role for protein 4.2 in strengthening the band 3-cytoskeleton linkage.

نویسندگان

  • A C Rybicki
  • R S Schwartz
  • E J Hustedt
  • C E Cobb
چکیده

Band 3 (anion-exchange protein 1-[AE1]) is the major integral membrane protein of human erythrocytes and links the membrane to the underlying cytoskeleton via high-affinity binding to ankyrin. It is unclear whether other cytoskeletal proteins participate in strengthening the ankyrin-band 3 linkage, but a putative role for protein 4.2 (P4.2) has been proposed based on the increased osmotic fragility and spherocytic morphology of P4.2-deficient red blood cells (RBCs). The present study was designed to investigate the hypothesis that P4.2 has a direct role in strengthening the band 3-cytoskeleton linkage in human RBCs, by measuring independent features of this interaction in normal and P4.2-deficient RBCs. The features examined were the rotational mobility of band 3 assayed by time-resolved phosphorescence emission anisotropy (TPA), and the extractability of band 3 by octyl-beta-glucoside, the latter being a nonionic detergent that selectively extracts only band 3 that is not anchored to the cytoskeleton. We find that the amplitude of the most rapidly rotating population of band 3 (correlation time, approximately 30 to 60 microseconds) is increased 81% and 67% in P4.2-deficient ghosts (P4.2NIPPON and band 3MONTEFIORE, respectively) compared with control ghosts. The amplitude of the intermediate speed rotating population of band 3 (correlation time, approximately 200 to 500 microseconds) is increased 23% and 8% in P4.2-deficient ghosts (P4.2NIPPON and band 3MONTEFIORE, respectively) compared with control ghosts, at the expense of the slowly rotating component (correlation time, approximately 2,000 to 3,000 microseconds, amplitude decreased 43% and 39% in P4.2NIPPON and band 3MONTEFIORE, respectively) and immobile component (immobile on this experimental time scale; amplitude decreased 26% and 10% in P4.2NIPPON and band 3MONTEFIORE, respectively) of band 3. These results demonstrate that P4.2 deficiency partially removes band 3 rotational constraints, ie, it increases band 3 rotational mobility. The nonionic detergent octyl-beta-glucoside, which does not disturb band 3-cytoskeleton associations, ie, it extracts only band 3 that is not attached to the cytoskeleton, extracted 30% and 61% more band 3 from P4.2NIPPON and band 3MONTEFIORE ghost membranes, respectively, compared with control ghosts. The octyl-beta-glucoside ghost extracts from both P4.2-deficient phenotypes were enriched in band 3 oligomeric species (tetramers, higher-order oligomers, and aggregates) compared with controls. Since band 3 oligomers selectively associate with the cytoskeleton, these results are consistent with a weakened band 3-cytoskeleton linkage in P4.2-deficient RBC membranes. P4.2 deficiency does not affect band 3 anion transport activity, since uptake of radiolabeled sulfate was similar for control and P4.2-deficient RBCs. Thus, we propose that P4.2 directly participates in strengthening the band 3-cytoskeleton linkage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nosocomial infections due to enterococci in patients with acute leukemia.

1. Cohen CM, Dotimas E, Korsgren C. Human erythrocyte membrane protein band 4.2 (Pallidin). Semin Hematol 1993; 30: 119-37. 2. Rybicki AC, Schwartz RS, Hustedt EJ, Cobb CE. Increased rotational mobility and extractability of band 3 from protein 4.2-deficient erythrocyte membranes: evidence of a role for protein 4.2 in strengthening the band 3-cytoskeleton linkage. Blood 1996; 88:2745-53. 3. Iol...

متن کامل

Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: protein rotational diffusion measurements.

Direct physical evidence for the linkage of a band 3 population to the cytoskeleton in the erythrocyte ghost membrane is presented. The rotational diffusion of band 3 proteins was mesured by observing flash-induced transient dichroism of a covalently bound eosin probe. After proteolytic release of a 40,000-dalton cytoplasmic segment of band 3 by trypsin, a considerable enhancement in the decay ...

متن کامل

Mapping of a palmitoylatable band 3-binding domain of human erythrocyte membrane protein 4.2.

Evidence accumulated over the years suggests that human erythrocyte membrane protein 4.2 is one of the proteins involved in strengthening the cytoskeleton-membrane interactions in the red blood cell. Deficiency of protein 4.2 is linked with a variety of hereditary haemolytic anaemia. However, the interactions of protein 4.2 with other proteins of the erythrocyte membrane remain poorly understoo...

متن کامل

RED CELLS Protein 4.2 is critical to CD47-membrane skeleton attachment in human red cells

The reduction in expression of the integral membrane protein CD47 in human red blood cells (RBCs) deficient in protein 4.2 suggests that protein 4.2 may mediate a linkage of CD47 to the membrane skeleton. We compared the fractions of membrane skeleton-attached CD47, Rh-associated glycoprotein (RhAG), Rh, and band 3 in normal and protein 4.2-deficient cells using fluorescence-imaged microdeforma...

متن کامل

Protein 4.2 is critical to CD47-membrane skeleton attachment in human red cells.

The reduction in expression of the integral membrane protein CD47 in human red blood cells (RBCs) deficient in protein 4.2 suggests that protein 4.2 may mediate a linkage of CD47 to the membrane skeleton. We compared the fractions of membrane skeleton-attached CD47, Rh-associated glycoprotein (RhAG), Rh, and band 3 in normal and protein 4.2-deficient cells using fluorescence-imaged microdeforma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 88 7  شماره 

صفحات  -

تاریخ انتشار 1996